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I. IKTRODUCTION 

The superior energy d iss ipat ing e f f i c i ency  o f  carbor .el-iQ i n  
ablat ive thermal protect ion system applications i s  we1 1-knowrb. Ho%mel . i n  
advanced systems applications such as planetary entry, both the sol id-vapw 

interphase mass transport ra te  and the carbon (graphi te)  surface tee;, .erature 
may achieve levels  considerably higher than i n  arv previous use. Thus, ques- 
t ions  concerning energy d iss ipat ion e f f i c iency  i n  these new regimes must be 
addressed i f  survi vable systems are t o  be designed. 

H is to r ica l l y ,  carbon ablat ion models have been based on the assumption 

o f  equi l ibr ium 
t i o n  surface i s  as-umed t o  be given by equi l ibr ium themdynamic propert ies a t  

the surface temperature. A t  temperatures above 4WOoK, the equi 1 i b r i  un t o t a l  
vapor pressure o f  carbon i s presently uncertain, with sane l i t e r a t u r e  values2s3 

being as much as an order o f  magnitude greater than the JANAF predicted value. 
Also, reported melt temperatures range f r o m  about 40@0 t o  ~~oo'K.~ When melt- 
i n g  occurs, the ablat ion e f f i c iency  m v  decrease by as much as a fac to r  o f  
three i f  the l i q u i d  carbon i s  str ipped away without vaporizing. Thus, even 
from the perspective o f  an equ i l i b r i un  ablat ion model, carbon ablat ion e f f i -  
ciencies above 4000% cannot a t  the present time be predicted wi th  desired 

accuracy. 

i.e., the carbon vapor s ta te a t  the abla- 

4 

lDolton, T. A., H. E. Goldstein, and R. E. Mauer, "Thermodynamic Performance 
o f  Carbon i n Hyper theml  Envi romnents," Progress i n Astronautics and Aero- 
nautics: Thermal Design Pr inc ip les o f  Spacecraft and t n t r y  Bodie5, vol. 21, 

g k e r ,  R. L., "Graphite Sublimation Chk?:try N o n e q z j b r i u n  Effects," - A I A A  
Journal, Vol. 15, Oct. 1977, pp. 1391-1397. 

3Krat;ch, K .  M., e t  al., "Graphite Ablat ion i n  High Pressute Environments," 
A I A A  Paper 68-1153, 1968. 

4JANAF Themochemical Tables, National Bureau o f  Standards, NBS-37, June 1971. 
5Baker, R. L. and P. G. Crowell, "Graphite Mater ia l  Ablat ion Performance i n  
High Thermal Radiation Environments," Pro ress  i n  Astronautics and '-onautics: 

. J. T. Bevans, Academic Press, N Y ,  9 PP 169- 

- Entry Heating and Thermal Protection, Vo q b 9 ,  t d .  W. Olstad, A I M  9 hY 9 1ym, - PP* 198 221. 
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This p ic tu re  i s  fu r ther  complicated by the multi-species character o f  

the carbon viipor s ta te and the nonequilibrium nature of carbon ablat ion i n  
advanced  application^.^*^^^ To encompass these features, an ablat ion model 

must express the interphase mass transport ra te  i n  terms o f  the vaporization 
k ine t i cs  o f  each carbon species. 

6 

I n  such a nonequilibrium model, these r a t s  are given i n  terms o f  the 
species vaporization coef f ic ients .  
have been experimentally determined only a t  the r e l a t i v e l y  'IW temperature o f  

2700'K.6'8 There i s  apparently no published information coticerning t h e i r  
temperature dependence. 

Carbon species vapori za t i  on coef f i c i e n t r  

I n  sumnary, the primary thermochemical propert ies required i n  order 
t o  accurately pred ic t  expected carbon mass loss  rates per u n i t  input  o f  energy 
are the vapor ;:issure, the m e l t  temperature, and the k ine t i c  ra tes associated 
with a nonequi 1 i brl: urii phase changL - The current uncertainty o r  nonexi stence 
o f  values :or these pr-operiies a t  operating temperatures above 4000°K pro- 
vided the motivation f o r  the work reported herein. The pr inc ipa l  objectives 
were t o  determine the above propert ies through a combined experimental znd 

analy t ica l  e f fo r t .  

The vapor pressure and vaporization coe f f i c i en t  determination tech- 
niques used i n  t h i s  work represent ; sign i f i can t  departure from standa:d high 
temperature i .e., Knudsen c e l l s  and f ree vapwizat ion experi- 

ments. The present method i s  based upon cor re la t ing  experimental ~ a - 5 ~ ~  laser  
ab lat ion data wi th  an analy t ica l  moue1 o f  the nonequilibrium phase chit:,: 

6Palmer, H, B.  and M. Shelef, "Vaporization of Carbon," Chemistry and Physics 
o f  Carbon Vol. 4, Ed. P. L. Walker, Jr., Marcel Dekker, Inc., NY, 
'BaKer,K-'L., "An I r revers ib le  Thermodynamics Model f o r  Graphite Su;l""&tion 
i n  Radiation Envirornnents," Progress i n  Astronautics and Aeronaut<cs: Outer 
Planet Heating and Thermal - PFotection Systems, Vol. 64, Ed. 4. Viskanta, AIM, 

gavi tsanos,  P. D., "The Vaporization o f  Pyro ly t i c  Graphite," General Elec- 
1 1919, PP* z1o-zz/* 

t r i c  Co., GE R 66.5331, May 1966. 
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process. The biggest advantage o f  this new approach i s  that  it allows the 
upper temperature limit of i'.le carbon data t o  be extended from the normal 
2700% up t o  4600.K. A unique approach f o r  t h e  delennination o f  carbon melt- 
i n g ,  based on detecting changes i n  surface reflectivity,  has a lso been used. 

Experimental carbon ablaticn data have been obtained over a wide 
range of slirface temperature (3300 t o  4600'K) by employing G continuous wave 
laser  for  data a t  the lowe:. md o f  this temperature range and a pulsed l a se r  
fo r  achievi ng h i  gher temperatures. A nonlinear analytical  model describing 
the nonequilibrium gas dynamics and chemical rate processes tha t  occur when 
carbon i s  rapidly vaporized has a lso been developed" a s  an extension a! 
e a r l i e r  Work w i t h  l inearized models.2s5s7. T h i s  report  discusses comparfson 
o f  model predictions w i t h  the experimental data and conclusions from this 
regarding the desi red  high temperature thermochemical properties of carbon. 

The supporting analytical  work is described i n  Sectior 11, followed 
by a discussion of data interpretat ion ifi Section 111. Conclusiont are  sm- 
marized i n  Section IV. 

%argrave, J .  L., Ed. The Characterization *- o f  High-TempeTature Vapors, 
John Wiley & Sons, NYT 
Interim Report, TR-0081(6728-02)-1, The A€-ospace Corporation, E l  Segundo, C A Y  
December 1981 . 

loBaker, P L., "Carbon Nzthl ibr ium Phase Change," Office of Naval Research 
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I I. SUPPORTING ANALYSES 

I n  ode1 t o  obtain the 4esired thermochemical propert ies from the 
experimental carbon laser ab lat ion data, an analy t ica l  descript ion o f  the non- 
equi l ibr ium gas Jynamics and cklcmical k ine t ics  of the phase change process i s  

needed. The nonlinear Knudsen layer  model which we have developed f r o m  t h i s  
purpose has been described i n  Ref. 10. I n  Subsection I I - A  below, the model i s  
b r i e f l y  reviewed and recent improvements t o  i t  are described. Following th is ,  
baseline model predict ions and the sens i t i v i t y  oc calculated resu l t s  t o  model 

parameters are d i  sassed. I n  Subsection 11-B, complementary analy t ica l  work 
i n  progress through a j o i n t  e f f o r t  with the Univers i ty  o f  Texas a t  Austin i s  
described. 

A. NONLINEAR KNUDSEN LAYER MODEL 

1. Model Description 

As shown schematically i n  Fig. la, the Knudsen layer  i s  a t h i n  region 
( the order o f  a feu  mean f r e e  paths i n  thickness) imnediately above the rapid!y 

subliming or vaporizing carbon surface. 
dynamic and chemica; ra te  processes occur which determine the carbon v a p x  

state as 't i s  transported away from the ablat ing surface. Macroscopic rnea- 
surements o f  pressure p, density c? , tmperature T, and convective ve loc i ty  u 
can only be made i n  the continuum gas dynamics region above the Knudsen layer  
edge. A Knudsen layer model provides the re la t ionships between these measur- 
able variables and the equi l ibr ium (saturation, subscript s )  thermodynamic 
properties of the carbm vapor a t  the s o l i d  or l i q u i d  surface. 

I n  t h i s  region, nonequil ibr iun gas 

The modeling approach we hade used represents an extension o f  the 
method f i r s t  described by Anisimov." I t  i s  based upon equations f o r  the 

llAnisimov, S. I., "Vaporization o f  Metal Absorbing Laser Radiation," Soviet 
Physics (JETP), - Vol. 27, No. 1, 1968, pp. 182-183. 
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conservatim o f  mass, momentun, and energy across the Knudsen layer. 
shown schematically i n  Fig, It, where J may be thought o f  as a f l u x  o f  mass, 
momentun, o r  energy. A t  the edge o f  the Knudsen layer, the f luxes are repre- 

sented by t h e i r  well-known expressfons from continuuu gas dynamics. A t  the 
surface, uvJs represents d i rect ional  f luxes away from the surface due t o  
a change o f  phase from the sol id, and Jb represents incoming d i rect ional  
f luxes caused by b a c k x a t t e r i  ng o f  molecules during c o l l  i sion processes wi th in  
the Knudsen layer. A f rac t i on  o f  Jb, acJb, i s  condensed while the 

remaining f rac t i on  ( 1  - ac)Jb i s  ref lected. The quant i t ies av and orc 
are the vaporization and condensation coeff ic ients,  respectively. 

This i s  

Follobdng Anisiuov and Bird," the mass, momentun and energy consewa- 
t i o n  equations across the Knudsen layer f o r  carbon species Ci, i = l ,  2, ... n, 

my be wr i t t en  

(i = 1, 2, ... n) ( ' 1  

lZBird, G. A., Molecular Gas Dynamics, Oxford Unive-sity Press, London, 1976. 
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(b) 
(b) Balance o f  Fluxes Across Knudsen Layer 

Fig.  1. The Knudsen Layer 
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The functions f(xi) are given by 

2 
1 -xi f (xi) = nl/2xierfc(xi) - e 

2 2 1  xi -xi 
A x i )  = (xi + P)erfc(xi) - 'n'72 e 

where 

U. 

Quant i t ies  not y e t  defined i n  the above equations are the molecular weight A ,  
the convective ve loc i ty  w o f  the backscattered molecules s t r i k i n g  the surface, 

and G which i s  re la ted t o  the r a t i o  o f  speci f ic  heats 8 by 
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The quant i t ies  i n  Eqs. (1 )  through ( 4 )  are dimensional except f o r  xi, 

lb ,  and w. The l a t t e r  two variables are nondimensionalized by T and u, respec- 
t i ve ly ,  and xi i s  d i r e c t l y  proport ional t o  a species Mach nunber Hi, i . e .  

7, = Tb/T 

Uhen i t  i s  assumed tha t  Tb = T and w = u, the0 7, = 7 = 1 and the above 

equations reduce t o  those described i n  Ref. 10. The three conservation equa- 
t ions  do not al low one t o  solve f o r  Tb and w. An ad hoc assunption must be 
made i n  order t o  solve f o r  the other quanti t ies. Anisimov assumed 7, = w = 1. 
I f  the equations are wr i t ten  as above, these quant i t ies  may be parametr ical ly 
varied over t h e i r  e n t i r e  allowable range, i.e. 

- 

I n  th ib w q y ,  the s e n s i t i v i t y  o f  the calculated resu l ts  t o  the ad hoc closure 
assumption can be assessed. 

2. Baseline Calculated Results 

I n  a l l  o f  the calculat ions i n  t h i s  report,  i t  has been assumed t h a t  
u = a - a. Thus, fma t h i s  po in t  on the subscripts c and v w i l l  be 

dropped. Addit ional assunptions must be made before the coupled nonlinear 
C V 
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equations ( 1 )  through ( 3 )  can be solved. These assumptions are sumarired 
below: 

Base1 i ne Sensi t ivi ty  Study 

Closure assumption fo r  t b = G = I  O ~ i i ~ l  con re rv a t i on equ a t i on s 

Knudsen layer chemical 
species relaxation 

Knudsen 1 ayer i nternal 
energy s t a t e s  relaxation 

Frozen €qui 1 br i  um 

€qui 1 i b r i  m Frozen 

Species vaporization 
coeff ic ients  Frozen €qui 15 b r i  u n  
(adsorbed layer kinet ics)  

The baseline assuaptions'are supported by t h e  re la t ively large nuber 
of molecular co l l i s ions  (thousands) required f o r  species relaxation, the small 
( 5  t o  10) rider o f  molecular co l l iz ions  required f o r  rotational energy s t a t e s  
to relax, and t h e  short  residence time i n  the surface adsorbed layer fo r  mole- 
cules passing f r o m  the solid t o  the continuum vapor when the surface tempera- 
t u r e  i s  3000'K o r  greater.13 Uhen the kinetic processes i n  the adsorbed 
layer a re  frozen, the species vaporization coef f ic ien ts  are  assumed t o  be 

given by 

a i  = u  

and when these processes are i n  equf l ibr im,  f t  can be shorn 13*14 tha t  

i a i - ( a , )  

13Rosenblatt, G. #. , Personal Comnunication, Pennsylvania S ta t e  Universi ty,  

1 4 K l e i n ~ h i d t ,  P. 0. and 6. M. Rosenblatt, "Relative Vaporization Rates of 
Department o f  Chmi s t ry ,  University Park, PA. 

AsZ(g) and Asq(g) from an Arsenfc (1111 Surface," American Society of Mass 
Spectrometry Meeting, June 1977. 
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Baseline calculated resu l ts  are shown i n  Fig. 2. 

t i e s  across the Knudsen layer  (see Fig. l a )  i s  presented as a function o f  the 
Mach number M = u/ m& a t  the Knudsen layer  edge. 
wi th  a i s  also shown. From t h i s  figure, the values o f  p/ps f o r  a Mach nunber 
o f  1, i.e., p*/ps, can be obtained. The r a t i o  of stagnation pressure po t o  
ps can then be determined, since f o r  M = 1 

The r a t i o  o f  quanti- 

The parameter var ia t ion  

x 

Thus, the desired re la t ionships between quant i t ies  measured i n  the laser  abla- 
t i o n  experiments, i.e., the mass loss  ra te  m = pu, p,, and T,, and the 
vapor pressure ps and vaporization coe f f i c i en t  a have been established. 
The rather weak nonlinear dependence o f  ~,/p, and */m on a can be seen 
by renonnalizing and p l o t t i n g  these quant i t ies  as shown i n  Fig. 3. Note tha t  
lir* i s  the value m when the Knudsen layer  edge Mach number M i s  1 and ms = 
p s , / m .  Thus, Fig. 3 represents calculated solut ions o f  Eqs. (1) 

through ( 3 )  as a function o f  a f o r  the case M = 1. 
, 

Predicted resu l ts  such as those shown i n  Fig. 3 can be used d i r e c t l y  
t o  qbtain vaporizatian coef f i c ien ts  from the experimental data. The method i s  
described fu r ther  i n  Subsection 111-8-1. S i m i l a r l y ,  predicted resul ts,  such 
as those presented i n  Fig. 2, can be used t o  obta in  vapor pressure ps from 
experimental data as described i n  Subsection I I I - B - 2  and Ref. 10. 

3. Sens i t i v i t y  Studies 

a. Closure ASSUmDtiOn f o r  Conservation Equations 

The sens i t i v i t y  o f  Calculated resul ts,  f o r  the primary quant i t ies  o f  
d i rec t  i n te res t  p/ps and m/ms, t o  the closure assumption fb = 6 = 1 i s  shown 
i n  Fig. 4. Both 7, and W Were systematically changed over t h e i r  e n t i r e  range 
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o f  possible values, i.e., Eq. (7). As nottd, p/ps i s  e x t n r e l y  insensi t ive to 

the c losum assuption. The other variable */is increases by a n a x i l u  of 5 
percent then i t  IS assued t h a t  U - O and Tb = Ts/f. Physically, a s s u i n g  
ii = 0 would not appear t o  be r e a l i s t i c  when the Mach n u b e r  i s  large. Thus, 

especial ly f o r  H = 1, the baseline calculated resu l t s  f o r  */is should be very 
close t o  the correct  value. 

b. Chemical Species E q u i l i b r i u  i n  the Knudsen Layer 

I f  the carbon species concentrations i n  the Knudsen layer are assmed 
to be i n  chemical e q u i l i b r i u  ra ther  than frozen a t  t h e i r  saturation condi t ion 
values, as i n  the baseline calculations, the predicted resu l t s  change as shown 
i n  Fig. 5. The primary quant i t ies  o f  interest ,  p/ps and (i/hs) as wel l  as 
p/ps,  are r e l a t i v e l y  insensi t ive t o  the ra te  of chemical re laxat ion processes 
i n  the Knudsen layer. The temperature, however, i s  more sensi t ive t o  t h i s  
a s s w t i o n ,  since equ i l i b ra t i on  involves changes i n  ind iv idual  species concen- 
t ra t i ons  w i t h  r e l a t i v e l y  large net energy release. 

C. Frozen In ternal  Energy States i n  the Knudsen Lqyer 

The baseline calculat ions assume t h a t  the i n te rna l  energy states o f  
the polyatomr’c carbon species are i n  equi l ibr ium throughout the Knudsen layer. 

If, instead o f  th is,  the energy i n  these states i s  frozen a t  the saturation 
temperature TS value, then much less energy i s  avai lable t o  be transferred 
t o  t ranslat ional  and directed (convective) ve loc i ty  states. As a consequence, 
h e n  these states are t m e n  the temperature a t  the edge of the Knudsen layer 
i s considerably reduced. 

This e f f e c t  and the e f fec ts  on I, p, and p are seen i n  Fig. 6. For 
a Knudsen layer edge Mach number of 1, both the temperature an4 pressure r a t i o s  
are decreased 
density remains v i r t u a l l y  the same. This i s  the largest  e f f e c t  seen thus f a r  
i n  the sens i t i v i t y  studies, and must be kept i n  mind h e n  the comparisons o f  
experimental data with predict ions are made. 

20 percent, the mass loss r a t i o  increases 3 percent, and the 
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Most o f  the carbon vapor i s  inade up o f  C3 mleculos.6 lherefore, 
the relaxation o f  in ternal  energy states across the Knudsen layer i s  l i k e l y  t o  
be somewhere between frozen and equi l ib- '  '. That is ,  the in ternal  enersv o f  
the C3 molecule a t  moderate temperature I < 4500.K) i s  d is t r ibuted mai.nly 
between rotat ional  and v ibrat ional  modes. Since the rotacionzll ewrgy  states 
equi 1 i brate ( re1 ax) rap id ly  w i  t h i  n a feu  molecular c o l l  i sions, they are 1 I kely  
t o  be i n  equilibrium. I n  contrast t o  th is,  the v ibrat io3al  e:lergy states 

equi l ibrate ( re lax)  s l o r l y  requi r ing thousands o t  mlec t l?a r  co l l is ions.  Thus, 
they are l i k e l j  t o  remain nearly Frozen. 

A (baseline) 

8 

C 

d. Surface Adsorbed Laver K inet ics  

0.39 0.39 

0,?3 0.39 

1 .o 0.39 

The baseline calculat ions assume ai = a  , i.e., a l l  o f  the species 
vaporization coef f ic ients  are equal t o  one another. If; instead o f  this, the 
indiv idual  species remain i n  the adsorbed layer on the su~ face  long enough f o r  
chemical eguilibrdum t o  be established w i th in  the layer, then the ai w i l l  
not be equal but  rather re la ted to  a1 through Eq. (8b). The s e p s i t i v i t y  of 
calculated resul ts  t o  the carbon species Vaporization coef f ic ients  i s  shown i n  
Fig. 7. 

Results are shown f o r  Cases A, B, and C wi th  species vaporization 
coef f ic ients  as given below: 

I Case 

Even with the extreme (unphysical) assumption C, the calculated resu l t s  d i f f e r  
very l i t t l e  f r o m  the b e l i n e  resu l t s  ( A ) .  This indicaixes the dominant 
importance o f  a3. 
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B. mKECULAR DYWAHICS SIWLATIWS 

The ad hoc lanner i n  which the mass, nmmentun, and energy conserva- 
t i o n  equations discussed i n  Subsection 1 1 4  must be closed fortunately does 
not lead t o  great uncertainty i n  the primary calculated variables o f  interest .  
However, the conservation equation approach i s ,  e f fect ive ly ,  only able t o  con- 
sider l i m i t i n g  cases o f  frozen vi. equ i l ib r iun  chemical reaction rates f o r  
adsorbed layer, in ternal  energy states, and carbon species relaxat ion proces- 
ses. The sens i t i v i t y  studies ind icate tha t  model predict ions f o r  use i n  the 
detemi  nation o f  carbon t o t a l  vapor pressure and vaporization coef f i c ien ts  are 
also not c r i t i c a l l y  dependent upon the ra te  o f  these relaxat ion processes. 
Therefore, f o r  the pr inc ipa l  objectives o f  t h i s  work, a mde l  based upon the 
conservation equation approach appears t o  be, adequate. 

I f  a Knudsen layer d e l  capable o f  including the e f fec ts  o f  the above 
f i n i t e  ra te relaxat ion processes were available, it should be possible t o  
detemi ne these rates experimental l y  by comparing data with model predict ions. 
I n  t h i s  way, a Knudsen layer  can be considered a too l  for chemical k ine t ics  
studies i n  a manner analogous t o  the well-known use o f  shock wzves for such 
studies.15 The dif ferences i n  these approaches are appealing from an inst ru-  
mentation po in t  o f  view. Yhereas wi th  a shock wave the k ine t i c  processes are 
relaxing t o  a higher energy state (temperature) , i n  a Knudsen lqyer, they are 
relaxing t o  a lower energy state thus aiding the ear ly  t ime  ( i n i t i a l )  
de tec ti on accuracy. 

15Rcsler, E. L.., "The Shock Tube and Chemical Kinetics," F lu id  Dynamics and 
Applied Mechanics, Ed. Diaz and Pal, 1961, pp. 125-145. 
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A Iwrlti-species chemically react ing Knudsen layer  mode1 i s  presently 
being developed through a col laborat ive e f f o r t  wi th the Universi ty o f  Texas a t  

Austin. The Bodel i s  based upon react ive molecular dynamics simul-,tion algo- 
r i t hs16s17  which have previously been applied t o  complex problems o f  non- 
equ i l ib r lun  chemistry. Such a model seeks t o  r e t a i n  a l l  essential features of 
physical and chemical rea l i t y .  A report  on i s  work will be wr i t ten  separately. 

l%urner, J. S., "Discrete Simulation Methods for Chemical Kinetics," Journal 
of Physical Chemistry, Vol. 81, 1977, , ~ p .  2379-2408. 

l b n e r ,  J. S., "bran hicrophysics t o  Macrochemistry v i a  Discrete Simula- 
tions," Colputer Modeling o f  Matter, ACS Symposium Series No. 86, American 
Chemical Society, Washlngton, D . K  Ed. P. Lykos, pp. 231-26*. 
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I 1  I. DATA INTERPRETATION 

A. 

1. 

W Y  OF APPROACH, CRITICAL ASSUMPTIWS 

Relationship o f  D i r e c t l y  Measured Quantit ies t o  Desire . Tsem:hemical 
Properties - 
The way i n  which the continuous wave (CW) laser and the pulsed laser 

carbon ablat ion experiments are related t o  overa l l  program objectives i s  shorrn 
schematically i n  Fig. 8. Whereas both sets o f  experfmental data stp1;) vapori- 

zat ion coef f ic ient  in fomat ion,  carbon vapor pressure values can o71j be de- 
r i ved  from the CW laser data. The reason f o r  t h i s  l i m i t a t i o n  o f  i n f o m a t i o n  
avai lable from the data i s  discussed i n  Appendx C. Only the pulsed laser  data 
reach temperatures su f f i c i en t l y  high t o  po ten t i a l l y  swpTy carborl melt ing data. 

a. Vaporization Coeff ic ients 

The present method of obtaining vaporization coe f f i c i en ts  fra the 
laser ablat ion data i s  c losely  re la ted t o  the c lass ica l  LanQluir Method. The 
LanQauir vapor pressure pL i s  the product o f  the vaporization coe f f i c i en t  
and the e q u i l i b r i m  vapor pressure ps o f  the saturated vapor a t  teaperature 

Classical ly, these quant i t ies are re la ted t o  the vaporization r a t e  6 
and the molecular weight A by the Langaarir r e l a t i o n  
TS*  

The Langawrir method i s  carr ied out by vaporizing material i n t o  a 
vacum. The analysis discussed i n  Sr;bsection II-A indicates tha t  rrhen vaporl- 
zat ion takes place i n t o  a f i n i t e  back pressure envirorment, but the e q u i l i i r v i m  
vppor pressure ps i s  s u f f i c i e n t l y  greater than the aablent pressure pa.. 
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the L a n p u i r  pressure and the vaporization (mass loss) rate i are re la ted by 

where F1( a, 8 )  i s  a ncnlinear funct ion o f  vaporization c o e f f i c i e n t  u and 

also depends on the r a t i o  o f  spec i f ic  k a + s  8. 

Tnus, i f  Eq. (11) i s  used instead of the Langwf r  relat ion,  Eq. (lo), 
measured mass loss r a t e  m data can be converted t o  Langmi r  pressures. Then 
f o r  a given vapor pressure relat ionship h f c h  supplies ps as a functfon o f  

t q e r a t u r e  T,, a ( T s )  can be detemined. Because the funct ion Fl( a, 8 )  

i s  nonlinear, the conversion o f  i t o  u i s  best accoaplished by carry ing out 
the i t e r a t i o n  graphically. T h i s  i s  i l l u s t r a t e d  i n  Subsection I I I - B .  For the 
NASA pulsed laser experiments, the L a n m i r  pressure pL i s  s i m i l a r l y  re la ted 
t o  the measured f ree- je t  stagnation pressure po, i.e. 

It should be w h a s i z e d  t h a t  the values o f  vaporization c o e f f i c i e n t  
as a funct ion o f  terperature determined i n  t h i s  manner depend on the e q u i l i -  
brim vapor pressure, i .e., u = pL/ps. To uniquely detemine the vapori- 
zation coe f f i c i en t  from pL, the correct  e q u i l i b r l ~ l r  vapor pressure re la t ion-  
shio must be known as discussed below 

b. VaDor Pressure 

Once the Langrauir vapor pressure as a funct ion o f  1, i s  know, 
vaporization coef f ic ients  a A ( T s )  and a e ( T s )  corresponding t o  l i t e r a t u r e  vapor 

pressure relat ionships A and B, respectively, can be determined. The analy- 
t i c a l  model discussed i n  Subsection II-A can then be used to  p red ic t  m as a 
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function o f  1, f o r  constant pa. Calculations o f  t h i s  type f o r  two 
mpresentative carbon vapor pressu 3 specif icat ions, A and B (not  t o  be 
confused with Cases A, 8, and C o f  Section 111, are shown i n  Fig. 9 f o r  
d i e n t  presswes pa o f  1 at .  and 0.1 atm. For a given pa, the predicted 
resul ts  are asymptotic t o  Eq. (11) a t  the upper end o f  the tmperature range, 
i.e., A e r e  ps>>pa . Here, both therrochemical data sets A and 8, with 

vaporization coe f f i c i en ts  aA(ls)  and a (1 1, respectively, predic t  
the s- values o f  t o t a l  mass loss ra te  H. 

a s  

For given pa, as the t e q e r a t u r e  1, i s  decreased the predicted il 

values f o r  vapor pressure relat ionships A and B d i f fe r .  This di f ference 

becaes greater as fs 4s lorrcred s t t l l  wm. A t  the lower range o f  terpera- 
turns f o r  given pa, M var ies rap id l y  with 1, and the predicted resu l t s  
becaae a s y q t o t i c  t o  the l i n e a r  Knudsen-Langruir equation 

where Asp i s  the area o f  the laser  i r rad ia ted  spot. 

F n  Eq. (13). i t  can eas i ly  be seen t h a t  the rap id increase o f  M with 
1, occurs whenever p s ( l s )  i s  only s l i g h t l y  greater than pa. Since vapor 
pressure relationship; A and B p red ic t  ps - pa a t  d i f f e r e n t  values o f  Ts, 
the predicted dif ferences i n  !i versus l / T s  behavior seen i n  Fig. 9 may be 
d i r e c t l y  at t r iDuted t o  the d i f f e r e n t  values o f  p, a t  a given T,. 

Given measurements o f  H and Ts a t  a specif ied value o f  pa, com- 
parison o f  such experimental data wi th  predicted resu l t s  such as those rhown ir,  
Fig. 9, allows the proper e q u i l i b r i m  vapor pressure relat ionship ( A  o r  El or 
so# other) t o  be Cetemined. 
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Note: For all T , ' ~ d p i '  preswre 
pA is  alw%ys less than 
vapor prescure p B 

--- THERMOCHEMICAL DATA SET A, Q =  QA 

THERMOCHEMICAL DATA SET B, Q I Q B  

0.01 1 T 
2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 

1 0 ~ 1 ~  5 (OK-') 

Fig. 9. E f f e c t  o f  Ambient Pressure and Themchemical 
Data on Mass Loss Rate 
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C. kl t Teqerature 

As o r i g i n a l l y  envisioned i n  t h i s  work. the occurrence o f  carbon n e l t -  
i n g  bas t o  be re la ted t o  observed changcs i n  M versus l / T s  behavior o f  '-he 

high temperature pulsed laser  data. Since the heat o f  vaporization ( l i q u i d -  
vapor) i s  alnays less than the heat o f  sublimation (solid-vapor), an cbserved 

change o f  slope i n  the data could possibly be re la ted t o  the onset o f  melting. 

Subsequently, a more d i r e c t  approach involv ing noni t o r i n g  the surface 
r e f l e c t i v i t y  os a funct ion o f  time during the laser  pulse was r e c ~ a m e n d e d ~ ~  

and faplemented. For  the laser  annealing o f  semiconductor materials, t h i s  
technique has been used very successfully t o  detect lnelt ing by observing the 

large increase i n  r e f l e c t i v i t y  when the semiconductor surface melts.18 An 
aux i l i a ry  lasar  i s  used t o  monitor the r e f l e c t i v i t y .  

2. C r i t i c a l  Assunptf ons 

The purpose of the fo l lowing discussion i s  t o  examine some o f  the key 

assumptions re la ted t o  the v a l i d i t y  of  t h e  data in terpretat ions presented i n  
Subsection 111-B. 

a. Continuous Wave Laser Ablat ion Data 

For t h i s  data set, the d i r e c t l y  measured quant i t ies  are t o t a l  mass 

loss, run time, and surface temperature. The quant i t ies  compared t o  analyt ical  
model predict ions are the mass loss ra te  M and the saturated vapor temperature 
1, which i s assumed t o  be equal t o  the measured surface temperature. 

i8Acston, D. H., e t  al., "Time Resolved R e f l e c t i v i t y  of Ion-Implanted S i l i c o n  
During Laser Annealing," *p l ied Physics Letters, Vol. 33, 1978, pp. 437-440. 
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To o t t a i n  the mass loss rat2, tm, key assumptions are made. F i r s t ,  i t  
i s  assumed t h a t  a l l  mass loss takes place by sublimation and, sxondiy, t ha t  
the  area over which the sublimation takes place i s  the sane as the i r r a d i a t i n g  

laser spot size, even though the simple i s  rotat ing.  It i s  d i f f i c u l t  t o  con- 

c lus ive ly  substantiate these assumptions. The l a t t e r  assumption i s  a t  l e a s t  
qua l i t a t i ve l y  confinned by the v isual ly  observed carbon vapor plune, :.e., i t s  
f l o w  d i rec t i on  i s  nearly para l le l  t o  the axis o f  the incoming laser bean. The 
d i f f e r e n t i a l  time used t o  convert the t o t a l  mass 1 0 s  t o  a mass loss ra te  was 

obtained f r o m  the s t r i p  chart  records of  surface t m e r a t u r e .  The time incre- 
ment used i n  each case was t h a t  f o r  which the surface teqe ra tu re  remained 

wi th in  a small fraction, approximately 5 percent o f  i t s  highest value TS. 

Th: most c r i t i c a l  assumption re la ted t o  the measured surface t q e r a -  
tures i s  the assumed emissiv i ty value o f  uni ty.  For the py ro l y t i c  graphite 
samples which were i r rad ia ted  and viewed by the pyrometer i n  a d i rec t i on  
pa ra l l e l  t o  the a-b plane, t h i s  assumption i s  most defensible. 19n20 A change 

o f  emissiv i ty from 1.0 t o  0.9 s h i f t s  the measured surface temperatures up - 100'K which wculd s i g n i f i c a n t l y  a f f e c t  the vapor pressure conclusions. 

b. Pulsed Laser Ablat ion Data 

For t h i s  data set, the stagnation pressure po o f  the vaporized 

carbon plune i s  assuned t o  be derivable f r o m  the measured Mach disk geanetry 
using a simple algebraic relationshfp.21 fh i  s re lat ionship i s  substantiatec~ 

19Pyrolytic Graphite Handbook, Metal lurgical  Production Dept., General E-lectrirr 
Co. , scnenectady, NY, 1964 , as quoted 1 n Gokcen, N. A. , e t  al. , "Determinat.;cn 
o f  Graphi te/Liquid/Vapor T r ip le  Point by Laser Heating," High Tenperature 
Science, V c l .  8, June 1976, pp. 81-97. 

2 m i a n ,  Y. S., Ed., Thennophysical Properties o f  Matter, Vol. 8, I F I /  
Plenum Press, NY, 1970. 

21Covington, M. A., C. N. Liu,, and K. A. Lincoln, "Free-jet Expansions from 
Laser-vaporized Planar Surfaces," A I A A  Journal , Vol. 15, August 1977, pp. 1174- 
1179. 
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f o r  sonic o r i f i c e s  f o r  a wide range o f  gases, teaperatures, and pressure 
ratios." I t  i s  fur ther assumed t h a t  the choked carbon vapor f low vaporized 

f r o m  the s o l i d  carbon surface subsequently behaves as i f  emanating from an 
o r i f i c e .  The pyrometrical ly measured surface temperature, as i n  the CW laser  
data case, i s  sensi t ive t o  the assuned emissivity. 

The r e l a t i v e l y  steep slope o f  stagnation pressure po versus l / T s  
observed i n  the p y r o l y t i c  graphite vaporization data necessitated considerable 
reexamination o f  the methods f o r  determining both po and T,. This  slope 
was expected t o  have a nmer ica l  value near t h a t  o f  the normalized heat of 
fonnation o f  carbon, i.e., AH'/R 93,000.K. The slope seen i n  the data i s  
about 126,000'K. Possible explanations f o r  t h i s  behavior which have been 
consi dered are : 

o Emissiv i ty a funct ion o f  temperature 
o Steady-state energy balance not achieved 
o Sign i f i can t  rad ia l  conduction o f  energy 
o Unsteady surface morphology 
o Condensation o f  carbon vapor i n  the f r e e - j e t  plume 
o Energy release e f f e c t s  i n  the f ree - je t  plume 

o Stronqly temperature-dependent vaporization coef f i c ien ts  

Our conclusions thus f a r  regarding these e f fec ts  are discussed consecutively 
below. 

I f  the emissiv i ty changes wi th  temperature, i t  i s  l i k e l y  t o  increase 

as temperature increases. It can eas i l y  be shown t h a t  accounting f o r  such a 
temperature dependence i n  the data reduction would increase the slope o f  the 
measured data, making i t  even m r e  d i f f i c u l t  t o  explain. 

2zAshkenas, H. and F. S. Sherman, Rarefied Gas Dynamics, Ed. J. H. de Leeuw, 
Academic Press, NY, 1966, Vol. 2, p. 84. 
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The e f f e c t  o f  not having achieved a steady-state balance o f  energy a t  
the ablat ing surface has been looked a t  by performing one-dimensional heat con- 

duction calculat ions. Even a t  the lowest laser  input  energy levels, where the 
time t o  steady state would be ?ongest, a reasonably quasi-steady Mach disk f low 
f i e l C  i s  established. Thus, non-steady-state energy balance e f fec ts  do not  
appear t o  be inf luencing the measured data. 

For the pulsed laser  data, the p y r o l y t i c  graphite samples were i r r a d i -  
ated para1 le1 t o  the c-axis. Thus, the high thermal conduct iv i ty d i rec t i on  was 
r a d i a l l y  outward f r o m  the c i r c u l a r  laser  spot. To deternine i f  rad ia l  conduc- 

t i o n  of energy was s ign i f i can t ly  a f fec t ing  the measured daw, addi t ional  pyro- 
l y t i c  graphite data were obtained using a new sample conf igurat ion t o  minimize 

rad ia l  conduction. Cyl indr ica l  samples were i r rad ia ted  end-on, wi th  the 
cy l inder  diameter approximately equal t o  the laser  spot size. The new data 
showed no s ign i f i can t  dif ferences from the older data f o r  which the laser  spot 
was focussed on a f l a t  planar ama much la rger  than the spot size. Thus, i t  
was concluded t h a t  rad ia l  conduction o f  energy was not a f fec t ing  the data. 

As ablat iop (surface mass removal) i s  i n i t i a t e d ,  the surface morpho- 
logy changes as e t r h  p i t s  are formed ard the nunber o f  s i t e s  a t  which atoms 

and molecules are released from the s o l i d  increases. When the surface has 
been canpletely covered wi th  etch p i ts ,  the nunber o f  s i tes  releasing atoms/ 

mo?ecules remains f ixed, i.e., the surface morphology i s  a t  steady state. A t  
the l o w r  leve ls  o f  laser i r rad ia t ion ,  considerably less mass i s  removed from 
the sample than a t  the highest l e v e l  o f  energy deposition. I f  the amougt o f  
mass removed i s  not s u f f i c i e n t  t o  have established a steady-state surface, 

then i ncreasi ng numbers o f  surface vapori zat ion s i tes  with increasing energy 
deposition cou' be the cause o f  the unexpectedly high slope i n  the ddta. 

Eased upon estimates of the amount of mass removal required t o  establ ish a 
steady-state surface morphology, 13*23 i t  was concluded tha t  a steady surface 
i s  l i k e l y  t o  be established even a t  the l o w s t  leve ls  o f  energy deposition. 
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The analytical  calculat ions indichte t h a t  i f  the chemical reaction 
rates, i.e., the carbon species equi l ibrat ion r a t e s  as well a s  the internal  
energy-translational energy relaxation rates, are frozen, t h e n  the expanding 
carbon vapor leaving the nonequilibriim region close t o  the surface (the 
Knudsen lqyer) i s  highly supersaturated. I f  this vapor subsequently condenses 
t o  solid carbon i n  the free-jet expansion, measured stagnation pressures would 
be too low. To "explain' the  data slope, a physical explanation supporting 
s ignif icant  condensation a t  the lower end of the temperature-stagnation pres- 
sure range and l i t t l e  o r  no condensat 'w a t  the upper end would be required.  
Tt is planned i n  future  experiments t o  look f o r  the presence o f  condensed 
carbon by measuring backscattering o f  He-Ne l a se r  l i g h t  from the free-jet plume 
regi on. 

There are  tw  potent ia l ly  s ign i f icant  sources of energy release i n  the 
expanding carbon vapor free-jet. A frozen vapor a t  the edge of  the Knudsen 
layer m i l d  begin t o  react  and equi l ibra te  carbon species i n  the free-jet 
region thereby releasing about 200 cal/mol. Similarly, nonequilibrium betwcen 
internal and t ranslat ional  energy degrees of freedom a t  the Knudsen layer sdge 
would also,  upon equi l ibra t i rq ,  release about the sane amount of energy. Argu- 
ing tha t  t h i s  energy i s  transferred in to  t ranslat ional  degrees o f  freedom and 
t h u s  increases the  pressure (and the stagnation pressure), the measured stagna- 
t ion pressures would be too h i g h  whenever s igni f icant  col l is ional  relaxation 
takes place. Since co l l i s iona l  relaxation increases w i t h  pressure and the 
measured stagnation pressures are  "too high" a t  l a rger  values of pressure, this 
e f f ec t  could explain the data. However, l i t e r a t u r e  data fo r  Mach d i s k  geome- 
t r i e s ,  including energy release effects (relaxat ion of internal and t ransla-  
t ional degrees of freedom), shows a very weak dependence on the r a t i o  0' 

specific heats U . 2 4  T h i s  indicates  t ha t  energy release has l i t t l e  e f f e c t  on 
the Mach disk location ( g e m t r y ) .  

23Rosenblatt, G .  M., "The Role o f  Oefects i n  Vaporization: Arsenic and A n t i -  

%en, Y .  s. ,  "Derivatfon o t  t h e  ree-jet Mach-disk Location Using the Entropy- 
mony," Surface Defect Properties of  Solids,  Vol. 5, 1976, pp. 36-64. 

L-lance Principle," Physics of F l u i d s ,  Vol. 18, No. 11, pp. 1421-1445. 

38 



If th vaporization cce f f i c i en t  changes rapidl-. w i th  teaperatm, the 
temperature dependence, which i s  expressed through an ac t iva t ion  energy AH*, 
i s  represented by25 

where AS* i s  an act ivat ion entrcpv. Combining t h i s  d 2 k  %e vapor pressure 
expression which i , given i n  tens e f  the standard heat o f  fonnation AH' and 
the standard entropy o f  formation b j  

- AH' e n  ps - - + AS" RT 

the Langnuir vapor pressure pL = ap, i s  given by 

From Eq. (14), a rap id var ia t ion  o f  a wi th  T requires AX$ >> AH'. Combining 
Eqs. (12) and (16 j  

- Atif I n  po = ~p + A S * - ! n F 2 ( c w , ? d  

z5 Rosenblatt, G. M., "Evaporation from Solids," Treatise on So l id  State 
Chemistry, Vol. 6a, Ed. N. B. Hannqy, Plenum Press, NY, 1916 , P *  199. 
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Thrs. rapld var ia t ion o f  a mear:s the slope o f  po versus 1/T, -AH*/R, w i l l  
!E considerably larger  i n  absolute value th rn  - AH'/R as seen i n  the data. 
Conclusions regalding t h i s  e f f e c t  are discussed i n  Subsectfon 111-8-1. 

6. TtiERm3CHfHIC*L PROPERTIES 

Vapori r a t i o n  Coeff icterl ts - - 1. 

The d a f m a t  i q o r t a n c e  of the n u e r i c a l  value of the c a m n  species 
(+ vaporization c o e f f i c i e n t  a3 on the calculated resu l t s  ms shown by the  

parametric s e n s i t i v i t y  study discussed i n  r e l a t i o n  t o  F i g -  7 i n  Subsect t i  

114. Because o f  t h i s  and because the a s u q t i o n  o f  equal values o f  u q o r i z a -  

t i o n  coeff ic ients f o r  s l l  species Is reasonable above UMO'K,13 I n  a l l  the 
resul ts  presented hem i t  has been assulcd t h a t  ai = a. 

For given values a and 3 ,  the calculated resu l t s  shown i n  Fig. 3 
and represent4 funct icnal ly  by Eq. ( I l ) ,  can be expressed as 

*itere C i s  a constant. A semi-log p r o t  o f  m versus l / T s  [see Eq. ! I S ) ]  thus 
w i l l  have nearly the s m e  slope as p,, i.e., the slope w i l l  be -AH'/R where 
AH' i s  tne reference heat o f  formation. For d i f f e r e n t  values o f  a, the 
"constant" C has a d i f f e r e n t  nmer i ca l  value. Lines showing U = 6A 

SP 
versus l / T s  f o r  th? various values o f  a w i l l  be p a r a l l e l  t o  one another as 
shown i n  Fig. 10. The t o t ? l  mass loss rate k (rsg/sec) i s  obtained frw 
i (g/c&-sec) by mult 'plying by tk laser spot area A (cn?) and d i v id ing  by 
1000. 

SP 



The l i n e s  i n  Fig. 10 were calculated assuming the t o t a l  vapor pressure 
ps t o  be given by the carbon species thennochemical data tabulated i n  Refs. 

26 and 27. Hereafter, these thennochemical data w i l l  be referred t o  as the 
L i v e m r e  data. If, instead, the JANAF data4 are used, the predicted H versus 

inverse temperature behavior w i l l  be as shown i n  Fig. 11. Some o f  the reasons 
f o r  the dif ference i n  these two thermochemical data sets are discussed i n  the 
f i n a l  paragraphs o f  Subsection 111-6-2. Note the d i f f e r e n t  slopes and i n t e r -  
cepts f o r  given constant a i n  Figs. 10 and 11. 

Comparison o f  the predicted resul ts  i n  Figs. 10 and 11 wi th  experi- 

mental data allows a t o  be determined graphical ly as a funct ion o f  Y,. Low 

arabient pressure data for py ro l y t i c  graphite samples obtained i n  the  continuous 
wave laser experiments (See Appendix A and Ref. 10) are also shom i n  these 
f igures along wi th  a best f i t  l i n e  through the data. Comparison o f  the data 

l i n e s  i n  Figs. 10 and 11 with the predicted resu l t s  gives the vaporization 
coe f f i c i en t  values and teqe ra tu re  dependence shown i r (  Fig. 12 for the two 
t h e m h e m i  ca l  data sets. 

Similarly, f o r  given values o f  a and 8 ,  the calculated resu l t s  shown 
i n  Fig. 13 and represented funct ional ly  by Eq. (12), can be expressed as 

Po = c2ps 

26Lee, E. L. and R. H. Sanborn, "Extended and Improved T h e m 1  Functions f o r  

2m H. R., 0. H. Krikorian, ard 0. A. Young, "Thennodynamic Properties o f  

the Gaseous Carbon Species C -C f r o m  298 t o  l0,000'K," High Teqer&ture - 
Science, Vol. 5, 1973, pp. 438-153 

Carbon Up t o  the C r i t i c a l  Point," Carbon, Vol. 11, 1973, pp. 555463. 
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Figures 13 and 14 give the predicted stagnation pressure po as a function o f  
inverse t e q e r a t u r e  f o r  the sime t he twchedca l  data and vaporization c o e f f i -  

c i en t  values as i n  Figs. 10 and 11. The pulsed laser stagnation pressure data 
are presented i n  Fig. 15. The data l i n e  f r o m  Fig. 15 i s  also shown i n  Figs. 13 
and 14. (It i s  severely truncated i n  Fig. 14 because a values > 1.0 are not 
physical ly meaningful. ) Vaporization coe f f i c i en ts  obtained grahica l ly  froa 
Figs. 13 and 14 are seen i n  Fig. 16. 

The resu l t s  o f  Figs. 12 and '.6 are combined, and the exper imn ta l l y  
determined values o f  a f n  3100'K t o  4600.K are presented i n  Figs. 17 and 18 

for  the L i w r r o r e  and JANAF t hemhemica1  data, respectively. I n  f i g .  17, the 
high s e n s i t i v i t y  o f  the r e s u l t s  t o  the value o f  surface emissivity, used i n  
reducing the p y t o w t e r  data t o  obtain surface teqera turc ,  i s  also shown. An 
emissiv i ty o f  0.97 fo r  the pulsed laser data i s  p a r t i c u l a r l y  a t t r a c t i v e  because 
the nrmetical values of the high tape ra tu re  data then match the lower terpera- 
ture data a t  1OOO'K and approach un i t y  a t  the L i v e m r e  theoret ica l  t r i p l e  
po int  (melt) terperature (4765%). I n  marked contrast, the v q o r i z a t i o n  
coef f ic ients  bawd on the J W F  themocherical data (Fig. 18) are phys ica l ly  
#aningfUl, i.e., less than unity, above 4m.K only i f  much lower  values o f  
emissiv i ty are appropriate f o r  the pulsed laser data, 

2. Vapor Pressure 

The vaporization coe f f i c i en t  discussion j u s t  collpleted gives values 
o f  the vaporization c o e f f i c i e n t  as a funct ion o f  terperature derived fma t w o  
vapor pressure relat ionships, i.e., Livennore and JANAF. The t o t a l  vapor 

pressure for carbon predicted by these two sets o f  womsended themochemical 
data i s  shown i n  Fig. 19. The L;vemre-predicted t o t a l  vapor pressure is 
higher by a factor  o f  about 2.5 a t  4000.K and by a factor  o f  a b w t  3.9 a t  
4765%. 
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The intended aethod of determining which thennochemical data are m x e  
nearly corrfxt  has been reviewed i n  Subsection 111-A and i s  discussed i n  de ta i l  
i n  Ref. ?O. I t  i s  based upon predicted differences i n  behavior between experi- 
mental data obtained when the ambient prersure i s  low re la t ive  t o  the vapor 
pressure and other experimental data obtained for  higher ambient pressures ( t h e  
order of the vapor pressure). This i s  i l lus t ra ted  in  F i g .  20. 

The data p o i n t s  used t o  determine the temperature dependence of the 
vaporization coeff ic ients  and the consequent "agreement" of JANAF- and 
Livwnore-predicted mass loss  ra tes  with the data are seen I n  F ig .  20a. T h e  

sane data points and predicted mass loss y-,?tes f o r  ambient pressure pa = 

1 Torr are shown i n  Figs. 206 and 2%. Also shown i n  these l a t t e r  f igures are 
predicted mass loss ra tes  f o r  pa ranging from 0.02 t o  1.0 htm-spheres for  the 
JANAF and L i  vermore thermochemical da ta  w i t h  correspondi::; vaporization coeffi-  
c ients .  
experiwntal 2ata. 

In  Figs. 21 t h r o u g h  23, these predicted resu l t s  are compared w i t h  the 

The data are very sparse, especially i n  F ig .  21. For these data, the 
ambient pressure i s  not high enough relat ive t o  the vapor pressure t o  cause a 
measurable difference i n  JMAF- and Livermore-predicted resli l ts  a+ the measured 
surface temperature T,. For the hi9ber ambient pressure data i n  F igs .  22 and 
23, the observed dependence o f  mass loss rate on ambient pres-Jre  and surface 
temperature i s reasonably i n  agreement w i t h  a:-=!ytical p r e d i c t i o x  based ul;m 
the Livermore thennochemical dat8.  

agreement of the experimental da ta  w i t h  p-edictions i s  obtained when JAJAF 
vapor pressures are used. Based upon t h i s  and the diszussion below, i t  i s  

concluded t h a t  the L i v e m r e  i & t a  should be used t o  calculate carbon vapor 
pressure as a function of temperature. 

I n  contr6s.t t o  t h i s ,  much l e s s  sat isfactory 

The basi s for  the Livermore thermocheolical data appc w s  t o  be v y 
well founded. The reference heat d l  formation used for  tk c r i t i c a l  carbon 
species C3 molecule i s  w i t h i n  0.5 kcal/mol of the average experimentai value 
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detemined by Yachi and Gil.artin.28 This i s  s ign i f i can t  because these 
investigators, -for the f i r s t  ti=, obtained very good agreement of  t h e i r  th i rd -  
law and second-law derived heat o f  fomation. The free energy functions f o r  
the Livemore data were calculated by Lee and SanbornE6 including contr ibu- 
t ions o f  e lectronic degrees 0 -reedom. Uithout the very high teaperature 
contr ibutions due t o  tke electronic degrees of freedom, t h e i r  thermal functions 
are essent ia l ly  i n  agreement with the established values o f  Strauss and 
Thiele," and t h e i r  entropy values are above the 'lower l im i ts '  determined 
by Hansen and Pearson.'' I n  contrast t o  th is ,  the JWM-recomended entro- 

pies f o r  C3 are below the Hansen and Pearson lower l im i ts ,  and the JANAF 
reference heat o f  fomat ion f o r  C3 i s  5.7 kcal/aol less than the average 
Yachi and G i l ~ a r t i n  value. 

A f i n a l  appealing feature of the Livemore data, as discussed by 
Leiiier, Krikorian, and YoungDz7 i s  tha t  the t o t a l  vapor pressure reaches the 
t r i p l e  po in t  pressure (= lo0  at.) a t  4765'K. This i s  several hundred degrees 
above the 1 i terature values for t r i p l e  poi n', (melt) temperature, but  consistent 
wi th  the melt m e r a t u r n  conclusion discussed i n  the fol lowing section. A 

s ign i f i can t  f rac t ion  o f  the Livemore-predicted t o t a l  carbon vapor pressure a t  
4765'K i s  due t o  carbon species above C5, especial ly C7. The contr ibut ions 
o f  these species t o  the t o t a l  vapor pressure are supported by the l a rger  slope 
o f  the high teraperature Langmuir vapor pressure data i n  Fig. 15. The JANAF 
tables presently do not give data for carbon species above C5. Because of 
t h i s  and the low JANAF C j  vapor pressure, the JANAF-predicted t r i p l e  po in t  
teaperaturn i s  ~5125.K. 

28clachi. F. M. and D. E. G i l m a r t i  n. 'Heat of Forrut ion and Entropy o f  C3 Uole- _ -  - 
tule,' High Teaperaturn Science,-Vol. I ,  No. 5, pp. 423-431. 

29Strauss. H. L. and E. Thi  ele. "Thernodynmics o f  C7. i I .  General b t h o d s  - 
for Nonrfgid b l e c u l e s  a t  Hi& T ~ F l f C I t V S , '  JO:--I of ChemtcaI physfcsD 

%ansen, C. F. and U. E. Pearson, "A Quantu Model for Bending Vibrat icns and 
Thermodynamic Properties of C3," Canadian Journal qf Physics, Vol . 51, 1973, 

Vol. 46, NO. 7, pp. 2473-2480. 

pp. 751-760. 



3. Melt  Teqerature 

a. Carbon Phase Change Detection Using Surfac2 Reflectance 

This invest igat ion of the possible phase change o f  carbon used a new 
technique evidently not e q l o y e d  yrevioJsly i n  carbon studies t o  detect the 

presence of a melt layer  on a s o l i d  substrate. The appl icat ion o f  t h i s  nethod 
was inspired by recent success i n  the use o f  t ime-msolwd spectral ref lect i-  
v i t y  o f  doped s i l i c o n  t o  monitor surface phase change during laser-heated 
annealing." The r e f l e c t i v e  behavior o f  gennanim (Gel and s i l i c o n  ( S i )  heated 

t o  melt ing are included along wi th  carbon resu l t s  t o  provide c q a r a t i v e  data 
when a l i q u i d  lqyer was known t o  be present. 

The r e f l e c t i o n  and re f rac t i on  o f  an electromagnetic wave a t  the opt ic-  
a l l y  smooth surfaces o f  l i q u i d  and s o l i d  mater ia ls can be accurately described 
by the Fresnel equations i n  terms o f  the mater ia l 's  op t i ca l  indices and the 

incidence angle o f  the radiat ion.  Horrever, once a surface i s  heated t o  tem- 
peraturns where melt ing or s ign i f i can t  vaporization occurs, i t  becomes rough- 
em:: and i s  no longer o p t i c a l l y  smoth. The induced d iscont inu i t ies cause 
scatter ing o f  incident rad ia t i on  independent o f  the material s i n t r i n s i c  

opt ica l  propert ies and, i f  the size o f  the i r r e g u l a r i t i e s  i s  o f  the order o f  
the rad ia t i on  wavelength or larger, the scatter ing dominates the r e f l e c t i v e  

behavior. I n  th i s  case, the d i rect ional  d i s t r i b u t i o n  o f  re f l ec ted  rad ia t i on  
can be best described by geometric opt ics t h a t  take i n t o  account the s t a t i s t i -  

cal  nature o f  surface features. 
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I n  these experiments, i t  was found t o  be advantageous t o  roughen the 
Ge and S i  surfaces p r i o r  t o  exposure t o  insure uniform melt ing over the heated 

area. Also, graphite surfaces were roughened by vaporizat<on regardless of 
t h e i r  i n i t i a l  smoothness. This makes the s t r i c t  appl icat ion o f  the Fresnel 
re la t i ons  f o r  predic t ing expected changes between s o l i d  and l i q u i d  phases i n -  
appropriate f o r  the data included herein. Since the purpose o f  t h i s  invest i -  
gat ion was t o  measure relat ive,  t rans ient  changes i n  surface ref lectance as a 
means t o  detect melting, canparisons between absolute r e f l e c t i v i t y  values pre- 

d ic ted fm electromagnetic theory for smooth surfaces and experimentally 
veasured b id i rec t i ona l  or s p a t i a l l y  integrated r e f l e c t i v i t i e s  are not imluded. 

However, f o r  the d i rect ional  ref lectance method and the mater ia ls 

used, the ref lected rad ia t i on  f l u x  i s  characterized by a specular component 
and a d i f f use  coqonent d i s t r i bu ted  about the r e f l e c t i o n  angle o f  the specular 
component. The specular capo iwnt  increases i n  r e l a t i v e  i n tens i t y  with i n -  
creasing incidence angle (i .e. , la rge r  grazing qngles) , and r e f l e c t i o n  o f  a 

col l imated be= approaches t h a t  f o r  pure specular re f lect ion.  This  makes the 
Fresnel equations useful f o r  c q a r i n g  
effects as well  as the r e l a t i v e  r e f l e c  

For a s o l i d  or l i q u i d  mater 3 

constant i n  a l l  directions, the Fresnc 

medim re la te  the f r a c t i o n  o f  inc ident  
o p t i c a l l y  smoth surface t o  the ref rac 
the incidence angle o f  the r a d i a t i ~ n : ~  

btda polar izat ion and incidence angle 

ances expected during heating. 

having op t i ca l  propert ies t h a t  are 
t y a t i o n s  for an isotropic,  absorbing 

rad iat ion t h a t  i s  re f lected fm an 
i v e  index, the absorption index, and 

1 

31BOrn, M., and E. Wolf, Principles of Optics, 2nd Edit ion, Pemagon Press, N7, 
1964. 
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there 

R, and R,, = t he  r e f l ec t iv i ty  o f  radiation polarized perpendicular 
and paral le l ,  reqec t fve ly ,  t o  the plane of incidence. 

2 + ( n 2  - k2 - sfn 6 )  2 2  { $1 = [(n2 - k2 - sin 6)  + 4n k - 

n = re f rac t ive  index 

k = absorption index 

8 = incidence angle 

These re la t ions  a lp  appropriate f o r  many sol id  and-l iquid substances 
including the c rys t a l l i ne  and l iquid .Ge and Si and, probably, the  l iquid phase 
of carbon considered herein. 

For strongly absorbing ani sotropic crystal  s, the above re1 ationship 
f o r  isotropic  materials does not properly account f o r  d i f fe ren t  optical  proper- 
t ies  along the crystal  axes. Anisotropic uniaxial materials having only one 
unique direct ion a re  typif ied by pyrolytic graphite w i t h  i ts stacked para l le l  
lqyers of carbon atoms. The  ref lect ion from opt ica l ly  smooth surfaces of u n i -  
axial  c rys t a l s  having optical  properties along the  c-axis t h a t  are d i f fe ren t  
from those nonnal t o  the axis  i s given by 32 

2 2  (cos0  - a, 1 + b ,  
A A - 

Rl - (cos9 + a,)' + bf 

( c - c o s 6 -  a,, 1 2 + (doses - b,, l2 

R,, = ( C . C O S ~ +  a,, 1' + ( d - c o s  + b,, 1' (23) 

3*Mosteller, L. P., and F. Wooten, "Optical Properties and Reflectance 0:  Uni- 
axial  Absorbing Crystals," J. Optical Society of America, Vol. 58, 1968, 
pp. 511-518. 
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where 

R, and R,, * the r e f l e c t i v i t y  o f  rad ia t i on  polarized perpendicular 
and pa ra l l e l ,  respectively, t o  the plane o f  incidence. 

c = (nxn2 - kxk2) , d = (nxk2 - nzkx) 

n = re f rac t i ve  index i n  j -d i rec t i on  
j 

= absorption index i n  j -d i rec t i on  
kj 

6 = incidence angle 

Note t h a t  the e q c t i o n s  f o r  un iax ia l  c rys ta l s  d i f f e r  frinn those for  
isot rap ic  materials cnly by including the differences i n  re f rbct fon and 
absorpti on i ndices dlong orthogonal axes. 

Us : I  Eqs. (20) and (21) wi th  op t i ca l  propert ies taken from Refs. 33 
and 3AL f o r  the r e f l e c t i o n  from o p t i c a l l y  smooth surfaces o f  s o l i d  and l i q u i d  

S i  ir. vacuun as shown i n  Fig. 24, it i s  eas i l y  seen t h a t  the use o f  a c o l l i -  
w-tc,; :em polarized so t h a t  i t s  e l e c t r i c  vector i s  perpendicular t o  the plane 
cf  irrcidence, and large grazing angles w i l l  maximize the ref lected energy. 
Likewise, the use o f  Eqs. (22) and (23) f o r  the r e f l e c t i o n  from smooth sur- 
facer o f  s o l i d  p y r o l y t i c  graphite wi th i t s  anisotropic opt ica l  propert ies 
taken fm Ref. 35 provides a s im i la r  conclusion as shown i n  Fig. 25. A pre- 
d fc t ion f o r  the r e f l e c t i v i t y  of l i q u i d  carbon i s  not included since the op t i -  
ca l  propert ies of the l i q u i d  phase are  not known, and the exact structure of 

62 



v) cu 
0 -  
d d  

I 
I 

v) w 

,QI 
21 a 

W u / 

, , :/', i." 
0 

0 

8 

8 

c 
LL 
0 

- 1  I 

1 
I 
1 I I I 

Y 
r3 z 

63 



t 

.. 
LI 

m 
0 

cc 
Q) 

. 
a 
Y 

0 
Y 

d 
v) 

I 
I 

v) w 

a 
;L 

2 

s! 
W 

u 
c 
Q 
0 

c( 

1 I I 

c; 0 0 0 
0 Qo 0 

T8 

I 
N 
d 

W u 
s- B 
o 
2 - 

0 

w 
V z 
W 

u z 
R e  
- 

0 0  
& *  

B 
h n 

0 
4r 
c 

c 
Q 
Y 

64 



the l i q u i d  i s  s t i l l  a matter of debate. 36937 However, there i s  no reason t o  
expect that  the reflectance from liquid carbon would be lower than t h a t  for  
the solid. 

b. ExDerimental Results and Conclusions 

A schematic of the experimental apparatus u t i l i z e d  is shown i n  
Fig.  ?6. Material samples were heated w i t h i n  a cylindrical  vacuum tank having 
windows on both ends and around the perimeter. 
pulsed Nd/glass laser  producing a uniform cross-sec.-ion beam a t  1.06 pm 
wavelength and operated i n  the normal, o r  burs t ,  node. The Nd/g?ass laser  
beam irradiated the material sample normal t o  the front  surface over heated 
areas 2.5 t o  4 mn i n  diameter, and the heating pulse was approximately tri- 
angular i n  shape w i t h  a total  pulse length of about 1.2 msec, Durifig l a se r  
heating cycles the tank was f i l l e d  w i t h  argon a t  pressures a t  10 Torr o r  less. 
The incident beam for  r e f l ec t iv i ty  measurements was obtained from a He/Ne l a se r  
focused onto the heated sample area a t  a grazing angle of 60' from the normal. 

Heating was provided by a 

The He/Ne laser  beam was polarized perpendicular t o  the plane of inci-  
dence (E-vector parallel  t o  surface) t o  maximize the reflectance as previously 
noted, and the beam was chopped a t  a frequency o f  20 kHz. The beam flux re- 
flected w i t h i n  a small sol id  angle passed through a 0.633 pm spectral line 
f i l t e r  to  minimize contributions due t o  the heating laser  beam reflection and 
thermal radiation flux, and then was focused onto a photodiode detector. 
Simultaneous time-resol ved surface temperatures on graphite samples were 
measured w i t h  a Si photodetector pyrometer i n  conjunction w i t h  spectral f i l t e r s  
t o  minimize reflected 1.06 pm laser  radiation. Because of the low tempera- 
tures  a t  which Ge and Si melt, i t  was not possible t3 measure time-resolved 
surface temperatures on these materials. 

36Bu,dyd F. P., "The P, T Phase and Reaction Dia ram fo r  Elemental Carbon, 

37Ferraz, A., and N .  H. March, T f q u i d  Phase Metal-Nonmetal Transition i n  
1979, J. Geophysical Rescarch. Vol. 85, 198 8 , pp. 6930-6936. 

Carbon," Physical Chemistry o f  Liquids ,  Vol. 8, 1979, pp. 289-297. 
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The surfaces of Ge and S i  samples were roughened w i t h  500 grit pdper before 
exposure t o  insure uniform surface melting when the surface was heated suf f i -  
ciently.  The pyrolytic graphite surfaces roughened t o  what appeared t o  be a 
stable s ta t2  as vapoAaation progresxd through multiple heating cycles. The 
Nd/glass l aser  beam irradiated the materia: simples normal t o  t he i r  surface 
and, i n  the case of the graphite, t h i s  heating and resul tant  vapcrization was 
perpendicular t o  the carbon deposition planes. 

Typical oscillosccpe traces of the surface reflectance signal f o r  laser-  
heated Ge and S i  a re  given i n  Figs.  27 and 28. 
trace i s  the chooped reflected beam s ign? l ,  ,?ad the lower trace shows the time 
history o f  the laser  pulse intensity.  For Ge and S i  heated t o  temperatures 
below the i r  melting pqin ts ,  the reflectances shown i n  Fiqs. 27a atid 27b are 
seen t o  increase s l ight ly  w i t h  increasing temperatcre and then t o  return t o  
the i r  preheated values. 

In  these photos, the upper 

In tun t ras t  t o  the small changes i n  reflectanc? a t  temperatures below 
the melting p o i n t ,  Ge and Si exhibit  large t ransient  changes when m e l t i n g  does 
occur, a s  illustrated i n  Figs.  28a and 28b. In these oscilloscope photos, the 
time-resolved reflectance signal i s  again the !!?per t race and the instantsne- 
ous laser  heating flux i n  arbi t rary units is  the lower trace.  For both Ge and 

S i ,  the refleccance i s  seen t o  increase a s  the surface melts and then t o  de- 
crease t o  a value intermediate between the liquid and the original so;id sur- 
face a s  the melted phase so l id i f ies .  The latge reflectance changes shown 
occurred dur ing  the f i r s t  heating pulse that  visual evidence of surface melting 
wits observed a f t e r  several heating cycles w i t h  increasing !aser peak heating 
flux. The increase i n  reflectance i s  c'ue t o  t h e  differences i n  r e f l ec t iv i ty  
of ths liquid and solid phases a s  predicted by Eqs. (20) and ( 2 1 )  i n  F i g .  24. 
and a s  observed dur ing  1 aSer annealing of doped S i  semiconductor material 
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The  transient,  bidirectional reflectance of roughened pyrolytic gra- 
p h i t e  during pulsed l a se r  heating ms over a wide range of terperatures  by tk 
sane t echnique .  Figures 29a through 29d show the reflectance response over 
the range of 2850°K t o  4485'K. These tesperatures a s s u e  a surface emissivity 
of 0.9 a t  the pyrometer detection wavelength o f  0.81 Bm, which has been found 
t o  be a reasonable value fo r  graphite." In these oscilloscope photos, the 
wper  t race i s  the re la t ive  reflectance signal and the 1olrRr t race  i s  the 
surface temperature signal. A t  the tmeratures t o  which the graphite sar, 2s 

were heated, the continuun thermal radiation f l u x  from the heated surface area 
w i t ' i i n  the spectral bandpass of  the pyrometer becaoes greater  than the  Hehe 
laser  beam f l u x  a f t e r  diffuse re f lec t ion  from t h e  roughened surfaces and in to  
the solid angle viewed by the p y m t e r .  This causes an increase i n  the over- 
a l l  in tensi ty  of the chopped reflectance signal a s  seen i n  Figs. 29a and 2%. 
In contrast ,  a change i n  surface reflectance i s  indicated by an increased 
height (peak t o  valley) of the chopped signal. Thus, i t  was necessary t o  
electronically subtract  the pyroseter signal f rom the  re f lec ted  &/Ne beam 
detector signal t o  obtaSn adequate sens i t iv i ty  f o r  t h e  chopped reflectance 
signal a t  the highest temperatures. This subtraction process coupled w i t h  the 
low level o f  HefNe beam f l u x  from diffuse ref lect ion on the vaporiration- 
roughened graphite surface causes the t r ace  shape shown i n  Figs. 29c and 29d. 

As i l l u s t r a t ed  i n  Fig. 29, typical pyrolytic graphite response was 
consistently observed i n  t h a t  t h e  reflectance smoothly increased 30 t o  40 
percent dur ing  the time the surface tmperature  was above 
re tu rned  t o  i t s  i n i t i a l  value upon cooling. Below maximum surface tempera- 
tures of =3500'K, no changes i n  t h e  surface reflectance were noted. T h e  
reflectance increase a t  the higher temperature is much smaller than tha t  noted 
for  S i  and Ge when a melt layer was created. I f  a l iqu id  carbon layer  was 
formed on the roughened surface, i t  would be expected t h a t  the reflectance 
increase wou'ld be very large by virtue of the ref lect ion surface changing from 
diffuse t o  specuiar i n  nature - and the inherently greater  reflectance of l i q u i d  
phases. 
roughened i r o n  surfaces tha t  have not been included i n  this report. 
t -  t o  the relat ively small reflectance change during heating, post-test  
observations i n  these and prevows experirnents21 shcw no physical evidence of 
a melt phase having been present during pulsed l a se r  heating. 

3500'K, and 

In fac t ,  t h i s  has been  observed i n  reflectance data on laser-heated 
In addi- 
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From these considerations, i t  i s  concluded tha t  the observed small 
Ef lec tance  increase of pyrolytic graphite :,robably i s  not due t o  me l t ing  bu t ,  

ra ther ,  t o  some a l te rna t ive  possibi l i ty  such a s  a sol id  phase c rys t a l l i ne  
t ransi t ion.  The conclusion tha t  the carbon triple p o i n t  temperature i s  above 
4500'K i s  i r t  contrast  t o  much of the e a r l i e r  experimental r e su l t s  t ha t  
suggested melting temperatures i n  the range of 3800 t o  4200'K. Hobever, a s  

dynaaiic properties and t h u s  further supports our  previous cok-lusions concern- 
i n g  carbon vapor pressure and vaporization coeff ic ients .  

6 

indicated previously, i t  i t  i n  agreement w i t h  the Livennore 2 6 2 7  them()- 

C. REMINING QUESTIONS 

The vapor pressure conclusion i n  Subsection III-B-E i t  dependent upon 
the assumed emissivity. However, since the assumed value of. unity ( f o r  viewing 
paral le l  t o  the a-b planes) i s  strongly supported by l i t e r a t u r e  data ,  
this conclusion should be considered firm. Likewise, bz-ause the melting con- 
clusion i s  based upon a d i r e c t  observational approach, t h i s  conclusion fs also 
not l ikely t o  be i n  error. T h e  vaporization coeff ic ient  conclusions below 
4000.K would also appear t o  be aefensible because of the r e l i a b i l i t y  of the 
emissivity assumption. 

19,EO 

For the pulsed laser  data above 4000'K, the pyrolytic graphite was 
i r radiated and viewed perpendicular t o  the a-b planes. The emissivity i n  t h i s  
direction for an ablated surface i s  l e s s  well-known. T h e  sensitivity of de- 
rived vaporization coeff ic ients  t o  the axumed emissivity value i s  seen i n  
F i  9. 17. A n  i ndependent detenni nation of the pyrolytic graph1 te emi ssi v i  t y  
(or surface temperature) i s  needed t o  reduce the uncertainty i n  the high 
temperature vaporization coeff ic ient  values. 
faporfzation coeff ic ients  for  the polycrystall ine graphite,  Graphnol (see 
Appendix B ) ,  can be obtained, i t  will be necessary t o  determine the emissivity 
of this carbon a s  a function o f  temperature f o r  ablated surfaces. 

In addition, before re l iab le  
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Based upon the discussion i n  Subsection 111-B-1, r e l a t i v e l y  strong 
dependence of the py ro l y t i c  graphite vaporization coeff ic ients on teaperature 
aqy be the correct  explanation of the ‘steep’ slope o f  the data i n  Fig. 15. 
However, other possibie explanations discussed i n  Subsection 111-A-2, and not 

y e t  eliminated, need t o  be given fd r the r  consideration. Therefore, we plan t o  
look f o r  condensed carbon p a r t i c l e s  d i r e c t l y  i n  the f ree- je t  plume by using a 

He-Ne laser and looking f o r  backscattemd radiat ion from carbon part iculates. 
Also, we hope t o  be able t o  modify an ex i s t i ng  method-of-characteristics i n v i s -  
c i d  p l m e  computer code t o  address the question o f  energy release e f fec ts  on 
Mach disk location. 
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IV. S W R Y  AMI CONCLUSIONS 

A n e w  method,  based upon the combined use of carbon laser  ablation 
data and analytical  modeling, has been used t o  determine carbon vapor pressure 
and vaporization coef f ic ien ts  a t  h igh  temperatures ( u p  t o  4 6 0 O O K ) .  
addition a surface r e f l ec t iv i ty  method has been used t o  place a lower limit 
on the arelt t q e r a t u r e  of carbon. 

In 

The consistently best agreement of t o t a l  vapor pressure data w i t h  

model predictions was obtained using carbon species thermochemical properties 
recoamended by Lawrence Livemre Laboratory. 26,27 In  contrast ,  corr:wisons t o  
the data w i t h  model predictions using JANAF-reconrmended properties showed con- 
sistently much less sat isfactory agreement. On the basis  of these comparisons 
and the more consistent agreement of the Livermore t h e m d y n m i c  functions 

cluded tha t  the vapor pressure of carbon i s  best repbesented by the LfLermore 
properiies. A t  490O0K, the JANAF-predicted to t a l  vapor pressure i s  a factor o f  

2.5 smaller t h a n  the Livermore value. Above 4 0 0 0 ° K ,  the iaportance of includ- 
i n g  the contributions of carbon species C6 and especially C7 t o  the to t a l  
carbon vapor pressure i s  supported by the high  temperature l a se r  data. These 
species are included i n  the Livermore publicatfons. 

( t  . t o f  formation and entropy) w i t h  recent l f t e r a tu re  value,. '?*a i c  ms con- 

U n t i l  now, no information has been available concerning the tempera- 
ture dependence or  high temperature values of carbon species vaporization 
coeff ic ients .  From the carbon laser  ablation data, vaporization coef f ic ien ts  
consistent w i t h  the L i  vermore thermochemical data conclusion above have been 
derived. The values of vaporization coef f ic ien ts  obtained are sensi t ive t o  the 
assumed values of surface emissivity. Thus, part icular ly  for  the data above 
4 0 O O 0 K ,  there i s  a need t o  accurately establ ish the emissivity o f  the pyro- 
l y t i c  graphite surface o r  t o  accurately measure the temperature by some other 
method (three-color photometry). I f  i t  i s  assumed t h a t  the h i g h  temperature 
emissivit j  i s  0.97, t h e n  the h i g h  temperature and intermediate temperature 
vaporization coeff ic ient  data are  i n  agreement a t  4 0 0 0 ' K .  
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An aux i l ia ry  Ke-Ne laser was used t o  monitor tbe carbon surface re- 
f l e c t i v i t y  as a funct ion o f  time during the laser pulse. NASA data a t  measured 
temperatures up t o  4500'K showed no evidence o f  t h e  large increase i n  re f lec -  

t i v i t y  expected when the surface melts. Such changes (increases) were success- 
f u l l y  observed f o r  other group I V - A  elements. Thus, i t  was concluded t h a t  the 
melt  temperature o f  carbon i s  greater than 4500'K. 

The conclusions regarding vapor pressure and vaporization coef f ic ients  
are impc;.-tant because the mass loss ra te  is proport ional t o  the Langnuir pres- 
sures i.e., the product of the vaporization coef f i c ien t  and the vapor pressure. 
I n  addition. the melt  temperature conclusion i s  technological ly important, 
since melt ing could reduce the energy-dissipating e f f i c iency  by as mucn as a 

fac to r  o f  three if the l i q u i d  carbon i s  str ipped away without vaporizing. 
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APPENDIX A 

DATA S U W R Y  

The Experimental data analyzed i n  t h i s  r r 9 o r t  are sumnarized i n  
Tables A-1 and A-2 (CW laser  data) and i n  Figs. A-1 through A-4 (pulsed laser  

data). A more complete descript ion i s  given i n  Refs. 10 and 38. The data 
l i n e s  i n  Fig. A-4 were obtained by combining t h e  in fo laa t ion  i n  Figs. A-1 

through A-3. 

38Covington, A. , "Ames Free-jet Laser Vaporization Experiments," Data Report, 
NASA A m s  Research Center, M o f f e t t  F ie ld,  CA, ,Ceptembe:- 198C. 
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Tab1 e A-1 Pyro ly t ic  Graphite Ablation Data* 

.aser P o w  
(tu1 

-u 

1.59 

1.89 

2.18 

2.32 

2.07 

2.83 

2.90 

3.05 

3.20 

3.34 

3 . U  

3.34 

3.79 

3.92 

4.10 

b.50 

- 
Torr 

0.5 - 

1581'1. 
1.67mgIrec 

1 
P 

lM',-K  
'.6c-;;:=c 

I455.K 
!. 51mg/sec 

1560.1: 
' . B(bg1sec 

1592'1: 
I.blmg/sec 

1647.1: 
3.3mgIsec 

A M B I E N T  P R E S S U R E  

1.005 
YII 

l631.K 
I3.9mglsec 

0.02 

1687'): 
!0.2mg/Sec 

0.05 

1 6 9 8 ' ~  
I 8.8mgl sec 

0.7 0.25 - 

3822'1: 
U.3mgIrtc 

3681'K 
17. ho ';ec 

3355-K 
38.6g/sec 

381 O'K 
7 1 . 7 m g / s ~  

M . 1  
?1.lmg/ sec 

3912'1: 
b1.9aglsec 

3Uar-K. 
72. 'kglrec 

*The nunbers given i n  each column are tire measured surface tL,kperature and mass 
loss rate.  
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Table A-2.  Graphnol Ablation Data* 

1.45 

i .% 

2 :a 

2 . : :  

2 . 3 3  

2.41 

2 '  

2.83 

..9G 

2.9! 

2.98 

2.96 

2.99 

3.05 

3.05 

3.05 

3.05 I 

! . C  

*The nunbers g'vcn i n  each column a w  t b ?  measured surface tmpet d r e  and ~ P S S  
los5 ra3' 
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Table A-2. Graphnol Ablaticn Data (Continued) 

3.19 

3-M 

3.41 

3-63 

3.99 

4.07 

4-21 

4.29 

4.36 

4.36 

4.36 

4.36 

4.x 

4.Y) 

4.51) 

4.58 

5.30 - 

T o r r  

1 

A t B  

0.2 0.5 

3 7 4 3 2  
ce.eo/uc 

~ 

1.0 

1 3 3 3  
%.srp/m 

1.05 

w - r  
I hg; 'X 
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Fig. A-1.  Free-Jet Peai Tota l  Pressure versus Peak 
Surface Teaperature 
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Fig. A-3 .  Peak Surface Temperature versus Peak Laser 
F l u x  f o r  Vaporizatio,. i n  Argon 
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Fig. A-4. Comparison o f  Pyrolytic Graphite and Graphnol Data 
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APPENDIX B 

GRAPHNOL DATA INTERPRETATION 

As seen i n  the data sumnary given i n  Appendix A, a large quantity of 
experimental data were a1 so obtained fo r  the firo-si-ai R polycrystal 1 i ne 
graphite, Graphnol . Because the Graphnol thermal condtlctivi t y  i s nearly i so- 
tropic,  the Graphnol cylindrical  samples were heated t o  a bright glowing orange 
by axial conduction away from the laser  i r radiated area. T h i s  caused mass t o  
be los t  from the cylindrical  surface due t o  heterogeneous reaction w i t h  oxygen 
i n  the ambient chamber atmosphere. A considerable e f f o r t  was devoted t o  elimi- 
nating the oxidation mass loss  contribution t o  the to ta l  mass loss  so t h a t  the 
sublimation mass loss ra tes  could be used t o  obtain vapor pressure and vapori- 
zation coefficient i nfomation. Unfortunately, no sat isfactory unambiguous 
method of doing this was found, even fo r  the very low p r c s u r e  (1  Torr)  datd. 

The 1 Torr data points from Appendix A are  plotted i n  F ig .  B-1. Also 
shown is  the pyrolytic data line from Fig .  10. Note t ha t  buth  l i nes  have about 
the sane slope. 
with Figs.  10 through 12 i n  the veport, we conclude tha t  the vaporization coef- 
f i c i en t  fo r  Graphnol i s  greater z t  a given temperature than tha t  fo r  pyrolytic 
graphite by a factor  of about 1.7. The a m m t  of mass lo s t  by cxidation i s  not 
known, and the emissivity o f  the Graphnol i s  l ike ly  t o  be less  than uni ty  ( a s  
assumed i n  the data reduction). Since correction for  both these e f f ec t s  would 
reduce the vaporization coeff ic ients  derived froin the data, i t  i s  probable tha t  
the vaoorization coefficfent for  Graphnol i s  actually less than tha t  for  pyro- 
ly t ic  graphite a t  a given temperature. 

Interpreting these data d i rec t ly ,  a s  discussed i n  connection 
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The high temperature Graphnol data f r o m  Appendix A, when in terpreted 
as discussed i n  the report  (see discussion o f  Figs. 13 through 16), give 
vaporization coef f i c ien ts  as seen i n  Fig. B-2. Again, shown f o r  comparison is 
the py ro l y t i c  graphite data l i n e  from Fig. 16. I f  the emiss iv i ty  o f  Graphnol 
and py ro l y t i c  graphite are about the same, then these resu l ts  ind icate t h a t  
carbon vaporization coef f i c ien ts  f o r  Graphnol ape approximately a fac to r  o f  5 

smaller than those f o r  p y r o l y t i c  graphite a t  a given tenperature. 
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F ig .  8-2. Vaporization Coeff ic ients (Livermore) 
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APPENDIX C 

INFORMATION AVAILABLE FROM CW VERSUS PULSED LASER DATA 

As indicated sct-vnaticllly i n  F ig .  8, carbon vapor pressure informa- 
t ion i s  obtained only from the C*d l a se r  data. 
t o  discuss why vapor pressure information cannot be derived from the pulsed 
laser  data. 

The  purpose of this Appendix i s  

T h e  theoretical  model predictions (Subsection 11-A) can best  be sum- 

marized by referr ing t o  Fig.  20. When the ambient pressure pa i s  much less 
than the carbon-saturated vapor pressure ps a t  temperature T,, t h e n  the 
predicted mass loss rate-surface temperature behavior i s  described by the 
s t ra ight  line i n  Fig. 20a. From the CW l a se r  data shown i n  Fig. 20a o r  the 
pulsed laser data shown i n  Fig. 15, the Lanpu i r  vapor pressure can be obtained 
via Eq. (11). Then,  once ps i s  obtl'ned by independent means, Eq. i l l )  can 
be solved f o r  the Vaporization coeff ic ient  a. 

When the above condition, i.e., p a ~ ~ p s ,  i s  not sa t i s f  ;ed, the pre- 
dicted mass loss rate-surface temperature behavior i s  described by the various 
curved lines (each f o r  a d i f fe ren t  pa)  shown i n  Figs. 20b and 2Oc. In Figs. 21 
through 23, CW 16s. . data a re  canpared w i t h  model predictions using d i f fe ren t  
them;hemical data sets t o  determine the "mre nearly correct" vapor pressure 
relationship. In order t o  do t h i s ,  i t  i s  necessary that  tk data be i n  the 
curved lines region (see Fig. 20b) of the m - l / T S  plane. Since the pulsed 
laser  data (Fig. 15) a l l  l ie  i n  the s t ra ight  line region of  model predictions, 
the method applied t o  the CW data i n  F igs .  21 through 23 t o  obtain vapor pres- 
sure information cannot be used. 



The reason t h a t  the pulsed laser  data a l l  l i e  along a s t ra igh t  l i n e  i s  
fundamentally i nherent t o  the experimental sethod, i .e. , stagnatirrn pressure p 

i s  derived f r o m  measured Mach disk geometry. To have a Mach disk, the f low 
0 

must be sonic (choked) a t  the surface and expand i n  a supersonic f ree - je t  

expansion. The condi t ion required f o r  sonic f low a t  the surface i s  pa/: ps 
From above, r e c a l l  t h a t  t h i s  i s  the sane conr:it ion as t h a t  required f o r  the 
s t ra igh t  l i n e  m versus 1/T, behavior. ?nus, a l l  the pulsed laser  data are 
the s t ra igh t - l ine  region. 

n 
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